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Hyperbolic @ MICCAI

▶ MNM: Multi-level Neuroimaging Meta-analysis with Hyperbolic Brain-Text
Representations — B41 (Wed-PM)

▶ Is Hyperbolic Space All You Need for Medical Anomaly Detection? — A292
(Thu-AM)

▶ HyperPath: Knowledge-Guided Hyperbolic Semantic Hierarchy Modeling for WSI
Analysis — A326 (Wed-PM)

▶ Hyperbolic Kernel GCN with Structure-Function Connectivity Coupling for
Neurocognitive Impairment Analysis — B205 (Fri-PM)

▶ Fine-Grained Rib Fracture Diagnosis with Hyperbolic Embeddings: A Detailed
Annotation Framework and Multi-Label Classification Model — C128 (Thu-PM)
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Embedding Spaces

Embedding Space Choices

The embedding space is crucial for a model to faithfully represent relationships
between data points.

Should Euclidean geometry remain the de facto choice for deep learning
models
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Embedding Spaces

Issues with Euclidean Embeddings: Distorsion

Euclidean space leads to significant distorsion regardless of the embedding dimension.

Theorem
(Informal; Lee, Naor, and Peres, “Trees and Markov Convexity”) There is a lower
bound in the minimal distorsion of embedding hierarchical structures (e.g. token
relationships) into Euclidean space (Rn)

“There is a performance bottleneck on how well Euclidean models can represent
complex token relationships”
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Embedding Spaces

Issues with Euclidean Embeddings: Distorsion Dilemma

Euclidean space face the dilemma of dimension-distorsion tradeoffs.
High dimensionality is often required to embed complex token relations in Euclidean
space with (relatively) low distorision.

Theorem
(Informal; Lectures on Discrete Geometry) The dimension required when embedding
unweighted graphs (in the form of token relationships/self-attention) grows
near-quadratically w.r.t. to distorsion.

“Euclidean models have limited scalability”
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Embedding Spaces

Example: Embedding Tree-structured Data
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Embedding Spaces

Example: Embedding Tree-structured Data
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So far, so good. Nodes
are close i.f.f.they are
connected by an edge.



Embedding Spaces

Example: Embedding Tree-structured Data
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Embedding Spaces

Example: Embedding Tree-structured Data
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But the outermost
nodes are becoming
increasingly close to one
another.
Even though they are
not connected by an
edge in the graph
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Embedding Spaces

Example: Embedding Tree-structured Data
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Things only get worse!
We have lost our
property
“close i.f.f share edge”



Embedding Spaces

Potential Solution: Hyperbolic Embedding Space

The volume of a ball in the hyperbolic
space grows exponentially with its radius
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Embedding Spaces

Hyperbolic Geometry for Deep Learning

We need an embedding space that can
better represent token relationship

▶ The distance between low-level tokens
on different branches should be
maximized and far away

▶ The distance between a high-level
token and a low-level token should be
minimized and close.l

Solution: any tree (i.e. hierarchical
distribution) can be embedded into
hyperbolic space with arbitrarily low
distorsion.
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Embedding Spaces

Poincaré Embeddings

Nickel and Kiela, Poincaré Embeddings for Learning Hierarchical Representations
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Embedding Spaces

Optimizing Poincaré Embeddings
Nodes:
S = {xi}ni=1

Parent-child relations:
D = {(u, v)}

Non-Parent-child relations:
N (u) = {v ′| (u, v ′) /∈ D} ∪ {v}

Hyperbolic representation of nodes: Θ = {θi}ni=1

Θ′ ← argminL(Θ) s.t.∀θi ∈ Θ : ∥θi∥ < 1 (1)

Pull parent-child nodes, push others.

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)∑

v′∈N (u) e
−d(u,v′)

(2)

d(u, v) = arcosh

1 + 2
∥u− v∥2(

1− ∥u∥2
)(

1− ∥v∥2
)
 (3)
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Embedding Spaces

Optimizing Poincaré Embeddings

θt+1 = ℜθt (−ηt∇RL (θt)) (4)

Optimize node embeddings with Riemmanian gradient descent.

θt+1 ← proj

θt − ηt

(
1− ∥θt∥2

)2
4

∇E

 (5)

Riemmanian gradient descent = Standard gradient + scaling + projection.
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Embedding Spaces

Poincaré Embeddings
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Hyperbolic Hybrid Approaches

Hyperbolic Image Embeddings

Khrulkov et al., Hyperbolic Image Embeddings
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Hyperbolic Hybrid Approaches

Convolutional Networks with Hyperbolic Embeddings

Guo et al., “Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers”
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Hyperbolic Hybrid Approaches

Hyperbolic Segmentation

GhadimiAtigh et al., Hyperbolic Image Segmentation
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Hyperbolic Hybrid Approaches

Uncertainty and boundary information for free

GhadimiAtigh et al., Hyperbolic Image Segmentation
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Hyperbolic Hybrid Approaches

Hyperbolic Image-Text Representations

Image
Encoder

Text
Encoder

Image
Encoder

Text
Encoder

Linear 
Projection

Linear 
Projection

Linear 
Projection

Linear 
Projection

L2 normalize L2 normalize expmO expmO

Contrastive Loss
(cosine similarity)

Contrastive Loss
(neg. Lorentzian distance)

+ Entailment Loss

αimg αtxt

Images Text Images Text

CLIP MERU

Desai et al., “Hyperbolic Image-text Representations”

Deep Learning in Hyperbolic Space 23 September 2025 24 / 42



Hyperbolic Hybrid Approaches

Entailment Cones

O

x

y

loss = 0

ext(x, y) aper(x)loss = –

(text)

(image)

Top-down view ⇓

Desai et al., “Hyperbolic Image-text Representations”
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Hyperbolic Hybrid Approaches

MERU

Desai et al., “Hyperbolic Image-text Representations”
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Fully Hyperbolic Models

Hyperbolic Operations: Difficulties

Addition in Euclidean Space Addition in Hyperbolic Space?

Out! 

Considerations:

1. Satisfy manifold constraints.

2. Satisfy neural operation properties.
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Fully Hyperbolic Models

Strategy 1: Tangent-Space Based Operations

Idea:
Map input to the tangent space at the origin, so f is a valid operation. Then perform
Euclidean operation and finally lift the output back to Hd,K :

f T ,K (x) = expKO

(
f
(
logKO(x)

))
(6)

Chami et al., “Hyperbolic Graph Convolutional Neural Networks”
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Fully Hyperbolic Models

Strategy 1: Cons

Computational Inefficiency

The repeated mappings to and from the tangent space cause significant computational
overhead.

Numerical Instability

The mappings could cause numerical stability issues. e.g. in the logarithmic map:

logKx (y) = DK
L (x , y)

y + 1
K ⟨x , y⟩L x∥∥y + 1
K ⟨x , y⟩L x

∥∥
L

(7)

if the points are close together, we risk dividing by or calling arccosin on 0.
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Fully Hyperbolic Models

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold “Fully Hyperbolic”
Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost
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Fully Hyperbolic Models

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold “Fully Hyperbolic”
Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost

Pseudo Lorentz Boost

1. Use euclidean function f : Rd+1 → Rd+1 e.g. Linear transformation
f (x) = Wx + b.

2. Perform f on x ∈ Hd ,K → Transformation on both time and space components.

3. Compute the associating time-like dimensions → Impose Lorentzian constraints.

f F ,K (x) =


√
∥Wxtime, space∥2 −

1

K︸ ︷︷ ︸
time-like dim

, Wxtime, space︸ ︷︷ ︸
space-like dim

 (8)
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Fully Hyperbolic Models

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold “Fully Hyperbolic”
Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost

Pseudo Lorentz Rotation

1. Use euclidean function f : Rd+1 → Rd+1 e.g. f (x) = ReLU(x).

2. Perform f on the space-like dimension of x ∈ Hd ,K → Transformation on only
space dimension.

3. Compute the associating time-like dimensions → Impose Lorentzian constraints.

f F ,K (x) =


√
∥Wf (xspace)∥2 −

1

K︸ ︷︷ ︸
time-like dim

, f (xspace)︸ ︷︷ ︸
space-like dim

 (9)
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Fully Hyperbolic Models

Strategy Comparison

Pseudo Lorentz Rotation: Transformation
on without time and space interaction.

( √
∥f (xspace)∥2−1/K

xtime
0

0 f (·)

)( xtime
xspace

)

Off-diagonal values are zero

Pseudo Lorentz Boost: Transformation on
both time and space-like dimension.

 √
∥Wx∥2 − 1/Ke0, W0,:√
∥Wx∥2 − 1/Ke1:d ′ W1:,:

( xtime
xspace

)

Non-zero off-diagonal values
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Fully Hyperbolic Models

Hyperbolic Residual Connection & Addition

Vector space formulation Gyrovector space formulation

Mobius Addition
Tangent-Space based method: Mobius addition based on parallel transport:

x ⊕P y = expKx (PO→x(log
K
O(y))) (10)
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Fully Hyperbolic Models

Generalized Lorentz Weighted Sum
More efficient, stable and expressive.

x ⊕L y = αx + βy

where α =
Wx√

−K ∥Wxx +Wyy∥L
, β =

Wy√
−K ∥Wxx +Wyy∥L

with Wx ,Wy > 0 (11)

Deep Learning in Hyperbolic Space 23 September 2025 35 / 42



Fully Hyperbolic Models

Hyperbolic Midpoint Operations

Hyperbolic midpoints have closed-form expressions in the Lorentz, Poincaré, and
Einstein models, and are equivalent under isometric mappings.

LMidK (x1, . . . , xN ; vi ) =

∑
j vjxj

√
−K

∥∥∥∑j vjxj

∥∥∥
L

PMidK (x1, . . . , xN ; vi ) =
1

2
⊗K

∑
j vjλ

K
xj xj∑

j |vj |(λK
xj − 1)

λK
x =

2

1 + K∥x∥2

a

aLaw et al., “Lorentzian Distance Learning for
Hyperbolic Representations”
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Fully Hyperbolic Models

Hyperbolic Self-Attention

Hyperbolic self-attention can be formulated with hyperbolic midpoint operations and
similarity score computed using the negative hyperbolic distance.

LAtten(Q,K ,V ) = LMid(v1, · · · , vN , {αi ,j}j=1)

PAtten(Q,K ,V ) = PMid(v1, · · · , vN , {αi ,j}j=1)

αi ,j =
exp(−d2

H(qi , vj))∑
l exp(−d2

H(ql , vl))
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Weaknesses

Gradients Vanishing

Guo et al., “Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers”
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Weaknesses

Summary

▶ Euclidean embeddings struggle with distortion and scalability in hierarchical
settings.

▶ Hyperbolic embeddings boost performance in tasks like image classification and
segmentation.

▶ Fully hyperbolic models avoid tangent-space mappings but require specialized
operations.

▶ Gradient vanishing and numerical instability remain open challenges in hyperbolic
learning.
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