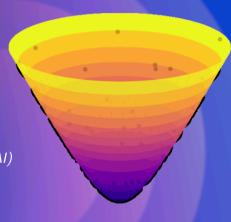
Hyperbolic Learning for Medical Imaging
Deep Learning in Hyperbolic Space

ALVARO GONZALEZ-JIMENEZ & SIMONE LIONETTI

International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)

23 September 2025



HyperMI

Website and material:

https://hyperbolic-miccai.github.io

Hyperbolic @ MICCAI

- ► MNM: Multi-level Neuroimaging Meta-analysis with Hyperbolic Brain-Text Representations B41 (Wed-PM)
- ▶ Is Hyperbolic Space All You Need for Medical Anomaly Detection? A292 (Thu-AM)
- HyperPath: Knowledge-Guided Hyperbolic Semantic Hierarchy Modeling for WSI Analysis — A326 (Wed-PM)
- Hyperbolic Kernel GCN with Structure-Function Connectivity Coupling for Neurocognitive Impairment Analysis — B205 (Fri-PM)
- ► Fine-Grained Rib Fracture Diagnosis with Hyperbolic Embeddings: A Detailed Annotation Framework and Multi-Label Classification Model C128 (Thu-PM)

Embedding Space Choices

The embedding space is crucial for a model to faithfully represent relationships between data points.

Should Euclidean geometry remain the de facto choice for deep learning models

Issues with Euclidean Embeddings: Distorsion

Euclidean space leads to **significant distorsion** regardless of the embedding dimension.

Theorem

(Informal; Lee, Naor, and Peres, "Trees and Markov Convexity") There is a lower bound in the minimal distorsion of embedding hierarchical structures (e.g. token relationships) into Euclidean space (\mathbb{R}^n)

Issues with Euclidean Embeddings: Distorsion

Euclidean space leads to significant distorsion regardless of the embedding dimension.

Theorem

(Informal; Lee, Naor, and Peres, "Trees and Markov Convexity") There is a lower bound in the minimal distorsion of embedding hierarchical structures (e.g. token relationships) into Euclidean space (\mathbb{R}^n)

"There is a performance bottleneck on how well Euclidean models can represent complex token relationships"

MICCAI2025

Issues with Euclidean Embeddings: Distorsion Dilemma

Euclidean space face the dilemma of dimension-distorsion tradeoffs. High dimensionality is often required to embed complex token relations in Euclidean space with (relatively) low distorision.

Theorem

(Informal; Lectures on Discrete Geometry) The dimension required when embedding unweighted graphs (in the form of token relationships/self-attention) grows near-quadratically w.r.t. to distorsion.

emma MICCA

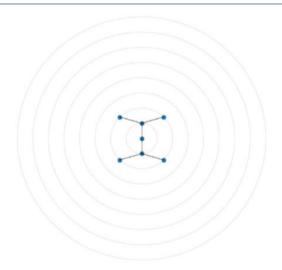
Issues with Euclidean Embeddings: Distorsion Dilemma

Euclidean space face the dilemma of **dimension-distorsion tradeoffs**. High dimensionality is often required to embed complex token relations in Euclidean space with (relatively) low distorision.

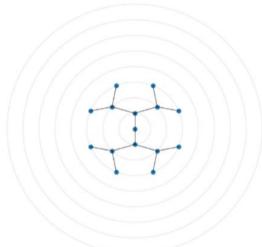
Theorem

(Informal; Lectures on Discrete Geometry) The dimension required when embedding unweighted graphs (in the form of token relationships/self-attention) grows near-quadratically w.r.t. to distorsion.

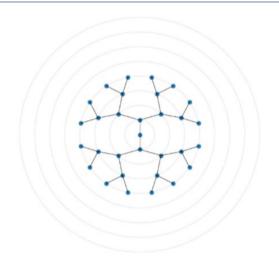
"Euclidean models have limited scalability"



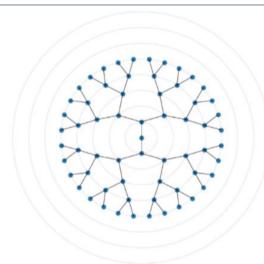
Example: Embedding Tree-structured Data



So far, so good. Nodes are close i.f.f.they are connected by an edge.



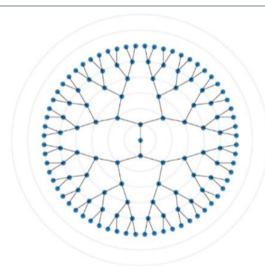
Example: Embedding Tree-structured Data



But the outermost nodes are becoming increasingly close to one another.

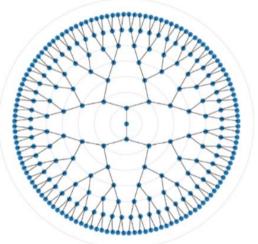
Even though they are not connected by an edge in the graph

Example: Embedding Tree-structured Data



But the outermost nodes are becoming increasingly close to one another.

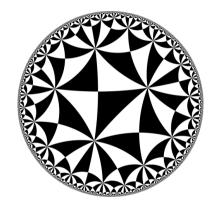
Even though they are not connected by an edge in the graph



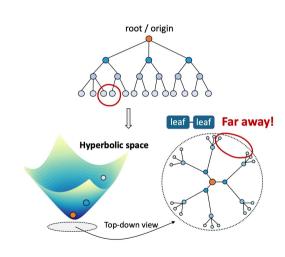
Things only get worse!
We have lost our
property

"close i.f.f share edge"

Potential Solution: Hyperbolic Embedding Space



The volume of a ball in the hyperbolic space grows **exponentially** with its radius

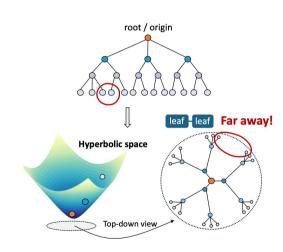


Hyperbolic Geometry for Deep Learning

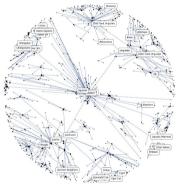
We need an embedding space that can better represent token relationship

- The distance between low-level tokens on different branches should be maximized and far away
- ► The distance between a high-level token and a low-level token should be minimized and close.

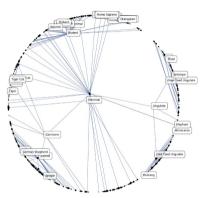
Solution: any tree (i.e. hierarchical distribution) can be embedded into hyperbolic space with arbitrarily low distorsion



Poincaré Embeddings



(a) Intermediate embedding after 20 epochs



(b) Embedding after convergence

Nickel and Kiela, Poincaré Embeddings for Learning Hierarchical Representations

Optimizing Poincaré Embeddings

Nod	es:		Pare	nt-ch	ild	relations:
_		> n	_			

$$S = \{x_i\}_{i=1}^n \qquad \qquad \mathcal{D} = \{(u, v)\}$$

$$\mathcal{N}(u) = \{v' | (u, v') \notin \mathcal{D}\} \cup \{v\}$$

Optimizing Poincaré Embeddings

(1)

Nodes: Parent-child relations: Non-Parent-child relations:

$$S = \{x_i\}_{i=1}^n \qquad \qquad \mathcal{D} = \{(u, v)\}$$

$$\mathcal{N}(u)$$

$$\mathcal{N}(u) = \{v' | (u, v') \notin \mathcal{D}\} \cup \{v\}$$

Hyperbolic representation of nodes: $\Theta = \{\theta_i\}_{i=1}^n$

$$\Theta' \leftarrow \operatorname{argmin} \mathcal{L}(\Theta) \quad \text{s.t.} \forall \theta_i \in \Theta : \|\theta_i\| < 1$$

Pull parent-child nodes, push others.

$$\mathcal{L}(\Theta) = \sum_{(\mathbf{u}, \mathbf{v}) \in \mathcal{D}} \log \frac{e^{-d(\mathbf{u}, \mathbf{v})}}{\sum_{\mathbf{v}' \in \mathcal{N}(\mathbf{u})} e^{-d(\mathbf{u}, \mathbf{v}')}}$$
(2)

$$d(\mathbf{u}, \mathbf{v}) = \operatorname{arcosh} \left(1 + 2 \frac{\|\mathbf{u} - \mathbf{v}\|^2}{\left(1 - \|\mathbf{u}\|^2 \right) \left(1 - \|\mathbf{v}\|^2 \right)} \right)$$
(3)

$$\theta_{t+1} = \Re_{\theta_t} \left(-\eta_t \nabla_R \mathcal{L} \left(\theta_t \right) \right) \tag{4}$$

Optimize node embeddings with Riemmanian gradient descent.

$$\theta_{t+1} \leftarrow \operatorname{proj}\left(\theta_t - \eta_t \frac{\left(1 - \|\theta_t\|^2\right)^2}{4} \nabla_E\right)$$
 (5)

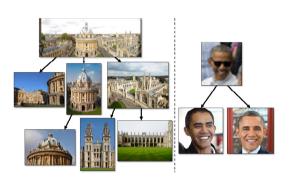
Riemmanian gradient descent = Standard gradient + scaling + projection.

Poincaré Embeddings

					Dimens	ionality		
			5	10	20	50	100	200
	Euclidean	Rank	3542.3	2286.9	1685.9	1281.7	1187.3	1157.3
ET ST		MAP	0.024	0.059	0.087	0.140	0.162	0.168
ZZ	Translational	Rank	205.9	179.4	95.3	92.8	92.7	91.0
WORDNET Reconstruction		MAP	0.517	0.503	0.563	0.566	0.562	0.565
	Poincaré	Rank	4.9	4.02	3.84	3.98	3.9	3.83
		MAP	0.823	0.851	0.855	0.86	0.857	0.87
	Euclidean	Rank	3311.1	2199.5	952.3	351.4	190.7	81.5
E di		MAP	0.024	0.059	0.176	0.286	0.428	0.490
WORDNET Link Pred.	Translational	Rank	65.7	56.6	52.1	47.2	43.2	40.4
	Translational	MAP	0.545	0.554	0.554	0.56	0.562	0.559
	Poincaré	Rank	5.7	4.3	4.9	4.6	4.6	4.6
	Poincare	MAP	0.825	0.852	0.861	0.863	0.856	0.855

					Dimens	ionality			
		Reconstruction			Link Prediction				
		10	20	50	100	10	20	50	100
ASTROPH	Euclidean	0.376	0.788	0.969	0.989	0.508	0.815	0.946	0.960
N=18,772; E=198,110	Poincaré	0.703	0.897	0.982	0.990	0.671	0.860	0.977	0.988
CONDMAT	Euclidean	0.356	0.860	0.991	0.998	0.308	0.617	0.725	0.736
N=23,133; E=93,497	Poincaré	0.799	0.963	0.996	0.998	0.539	0.718	0.756	0.758
GRQC	Euclidean	0.522	0.931	0.994	0.998	0.438	0.584	0.673	0.683
N=5,242; E=14,496	Poincaré	0.990	0.999	0.999	0.999	0.660	0.691	0.695	0.697
НЕРРН	Euclidean	0.434	0.742	0.937	0.966	0.642	0.749	0.779	0.783
N=12,008; E=118,521	Poincaré	0.811	0.960	0.994	0.997	0.683	0.743	0.770	0.774

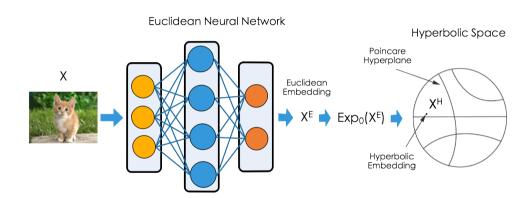
Hyperbolic Image Embeddings



Encoder	Dataset					
Encoder	CIFAR10	CIFAR100	CUB	<i>Mini</i> ImageNet		
Inception v3 [49]	0.25	0.23	0.23	0.21		
ResNet34 [14]	0.26	0.25	0.25	0.21		
VGG19 [42]	0.23	0.22	0.23	0.17		

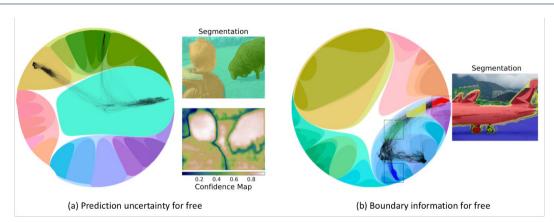
Khrulkov et al., Hyperbolic Image Embeddings

Convolutional Networks with Hyperbolic Embeddings



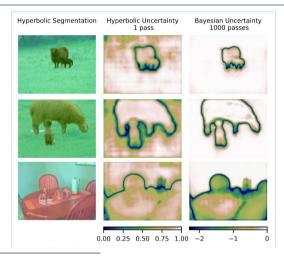
Guo et al., "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers"

Hyperbolic Segmentation



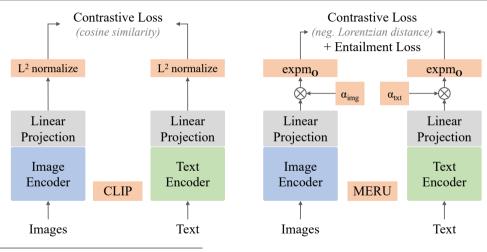
GhadimiAtigh et al., Hyperbolic Image Segmentation

Uncertainty and boundary information for free



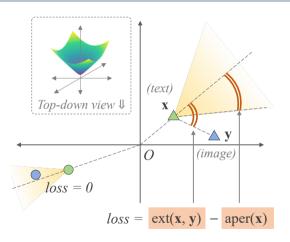
GhadimiAtigh et al., Hyperbolic Image Segmentation

Hyperbolic Image-Text Representations



Desai et al., "Hyperbolic Image-text Representations"

Entailment Cones



Desai et al., "Hyperbolic Image-text Representations"

MERU

MERU	CLIP
avocado toast	avocado toas
healthy	delicious
breakfast	
delicious	↓
homemade	+
fresh	+
[ROOT]	[ROOT]

	100
MERU	CLIP
brooklyn bridge	photo of
	brooklyn bridge,
	new york
new york city	new york city
city	new york
outdoors	+
day	+
[POOT]	[POOT]

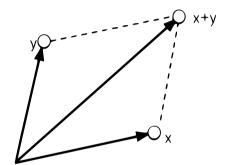
MERU	CLIP
taj mahal	taj mahal
	through an arch
monument	travel
architecture	inspiration
travel	↓
day	↓
[ROOT]	[ROOT]

MERU	CLIP
sydney opera	sydney opera
house	house
opera house	opera house
holiday	gift
day	beauty
[ROOT]	[ROOT]

Desai et al., "Hyperbolic Image-text Representations"

Hyperbolic Operations: Difficulties

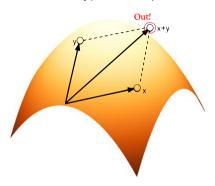
Addition in Euclidean Space



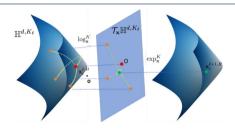
Considerations:

- 1. Satisfy manifold constraints.
- 2. Satisfy neural operation properties.

Addition in Hyperbolic Space?



Strategy 1: Tangent-Space Based Operations



Idea:

Map input to the tangent space at the origin, so f is a valid operation. Then perform Euclidean operation and finally lift the output back to $\mathbb{H}^{d,K}$:

$$f^{T,K}(x) = \exp_{\mathbf{O}}^{K} \left(f\left(\log_{\mathbf{O}}^{K}(x)\right) \right) \tag{6}$$

Chami et al., "Hyperbolic Graph Convolutional Neural Networks"

Computational Inefficiency

The repeated mappings to and from the tangent space cause significant computational overhead.

Numerical Instability

The mappings could cause numerical stability issues. e.g. in the logarithmic map:

$$\log_{x}^{K}(y) = \mathcal{D}_{\mathbb{L}}^{K}(x, y) \frac{y + \frac{1}{K} \langle x, y \rangle_{\mathbb{L}} x}{\left\| y + \frac{1}{K} \langle x, y \rangle_{\mathbb{L}} x \right\|_{\mathbb{L}}}$$
(7)

if the points are close together, we risk dividing by or calling arccosin on 0.

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold "Fully Hyperbolic"

Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold "Fully Hyperbolic"

Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost

Pseudo Lorentz Boost

- 1. Use euclidean function $f: \mathbb{R}^{d+1} \to \mathbb{R}^{d+1}$ e.g. Linear transformation f(x) = Wx + b.
- 2. Perform f on $x \in \mathbb{H}^{d,K} \to \text{Transformation on both time and space components.}$
- 3. Compute the associating time-like dimensions \rightarrow Impose Lorentzian constraints.

$$f^{F,K}(x) = \left(\underbrace{\sqrt{\|Wx_{\text{time, space}}\|^2 - \frac{1}{K}}}_{\text{time-like dim}}, \underbrace{Wx_{\text{time, space}}}_{\text{space-like dim}}\right)$$
(8)

Strategy 2: Fully Hyperbolic Operations

Solution: operate directly on the manifold "Fully Hyperbolic"

Two strategies: Pseudo Lorentz Rotation vs Pseudo Lorentz Boost

Pseudo Lorentz Rotation

- 1. Use euclidean function $f: \mathbb{R}^{d+1} \to \mathbb{R}^{d+1}$ e.g. f(x) = ReLU(x).
- 2. Perform f on the space-like dimension of $x \in \mathbb{H}^{d,K} \to \text{Transformation}$ on **only** space dimension.
- 3. Compute the associating time-like dimensions \rightarrow Impose Lorentzian constraints.

$$f^{F,K}(x) = \left(\underbrace{\sqrt{\|Wf(x_{\text{space}})\|^2 - \frac{1}{K}}}_{\text{time-like dim}}, \underbrace{f(x_{\text{space}})}_{\text{space-like dim}} \right)$$
(9)

Strategy Comparison

Pseudo Lorentz Rotation: Transformation on without time and space interaction.

$$\begin{pmatrix} \frac{\sqrt{\|f(x_{\mathsf{space}})\|^2 - 1/K}}{x_{\mathsf{time}}} & 0 \\ 0 & f(\cdot) \end{pmatrix} \begin{pmatrix} x_{\mathsf{time}} \\ x_{\mathsf{space}} \end{pmatrix}$$

Off-diagonal values are zero

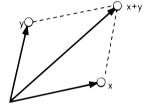
Pseudo Lorentz Boost: Transformation on both time and space-like dimension.

$$\left(\begin{array}{cc} \sqrt{\left\|\textit{Wx}\right\|^2 - 1/\textit{K}} \mathbf{e}_{0,} & \textit{W}_{0,:} \\ \sqrt{\left\|\textit{Wx}\right\|^2 - 1/\textit{K}} \mathbf{e}_{1:d'} & \textit{W}_{1:,:} \end{array}\right) \left(^{\textit{x}_{time}}_{\textit{x}_{space}}\right)$$

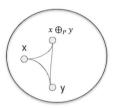
Non-zero off-diagonal values

Hyperbolic Residual Connection & Addition

Vector space formulation



Gyrovector space formulation



Mobius Addition

Tangent-Space based method: Mobius addition based on parallel transport:

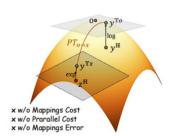
$$x \oplus_P y = \exp_x^K(P_{\mathbf{O} \to x}(\log_{\mathbf{O}}^K(y)))$$

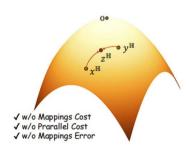
(10)

Generalized Lorentz Weighted Sum

More efficient, stable and expressive.

$$x \oplus_{L} y = \alpha x + \beta y$$
where $\alpha = \frac{W_{x}}{\sqrt{-K} \|W_{x}x + W_{y}y\|_{\mathbb{L}}}, \quad \beta = \frac{W_{y}}{\sqrt{-K} \|W_{x}x + W_{y}y\|_{\mathbb{L}}}$
with $W_{x}, W_{y} > 0$ (11)



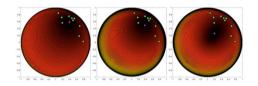


Hyperbolic Midpoint Operations

Hyperbolic midpoints have closed-form expressions in the Lorentz, Poincaré, and Einstein models, and are equivalent under isometric mappings.

$$LMid_{K}(x_{1},...,x_{N};v_{i}) = \frac{\sum_{j} v_{j}x_{j}}{\sqrt{-K} \left\| \sum_{j} v_{j}x_{j} \right\|_{\mathbb{L}}}$$

$$\mathsf{PMid}_{K}(x_1,\ldots,x_N;v_i) = rac{1}{2} \otimes_{K} rac{\sum_{j} v_j \lambda_{x_j}^K x_j}{\sum_{j} |v_j| (\lambda_{x_j}^K - 1)}$$
 $\lambda_x^K = rac{2}{1 + K \|x\|^2}$



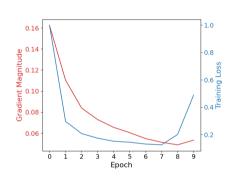
а

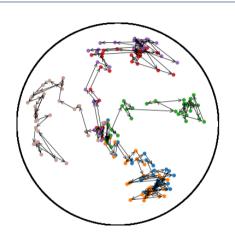
^aLaw et al., "Lorentzian Distance Learning for Hyperbolic Representations"

Hyperbolic self-attention can be formulated with hyperbolic midpoint operations and similarity score computed using the negative hyperbolic distance.

$$\begin{aligned} \mathsf{LAtten}(Q,K,V) &= \mathsf{LMid}(v_1,\cdots,v_N,\{\alpha_{i,j}\}_{j=1}) \\ \mathsf{PAtten}(Q,K,V) &= \mathsf{PMid}(v_1,\cdots,v_N,\{\alpha_{i,j}\}_{j=1}) \\ \alpha_{i,j} &= \frac{\mathsf{exp}(-d_{\mathbb{H}}^2(q_i,v_j))}{\sum_I \mathsf{exp}(-d_{\mathbb{H}}^2(q_I,v_I))} \end{aligned}$$

Gradients Vanishing





Guo et al., "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers"

Summary

- Euclidean embeddings struggle with distortion and scalability in hierarchical settings.
- ► Hyperbolic embeddings boost performance in tasks like image classification and segmentation.
- Fully hyperbolic models avoid tangent-space mappings but require specialized operations.
- Gradient vanishing and numerical instability remain open challenges in hyperbolic learning.

References I

- Chami, Ines et al. "Hyperbolic Graph Convolutional Neural Networks". In: Neural Information Processing Systems (2019).
- Desai, Karan et al. "Hyperbolic Image-text Representations". In: *Proceedings of the 40th International Conference on Machine Learning*. PMLR, July 2023, pp. 7694–7731. (Visited on 02/05/2025).
- GhadimiAtigh, Mina et al. *Hyperbolic Image Segmentation*. Mar. 2022. DOI: 10.48550/arXiv.2203.05898. (Visited on 02/05/2025).
- Guo, Yunhui et al. "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers". In: Computer Vision and Pattern Recognition (2021). DOI: 10.1109/CVPR52688.2022.00010.
- Khrulkov, Valentin et al. *Hyperbolic Image Embeddings*. Mar. 2020. DOI: 10.48550/arXiv.1904.02239. (Visited on 02/05/2025).

References II

Law, Marc et al. "Lorentzian Distance Learning for Hyperbolic Representations". In: Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research, PMLR, Sept. 2019, pp. 3672–3681, URL: https://proceedings.mlr.press/v97/law19a.html.

Lectures on Discrete Geometry. Springer New York, 2002. ISBN: 9781461300397. DOI: 10.1007/978-1-4613-0039-7. URL: http://dx.doi.org/10.1007/978-1-4613-0039-7.

Lee, James R., Assaf Naor, and Yuval Peres. "Trees and Markov Convexity". In: Geometric and Functional Analysis 18.5 (Dec. 2008), pp. 1609–1659. ISSN: 1420-8970. DOI: 10.1007/s00039-008-0689-0. URL: http://dx.doi.org/10.1007/s00039-008-0689-0.

References III

Nickel, Maximilian and Douwe Kiela. *Poincaré Embeddings for Learning Hierarchical Representations*. May 2017. DOI: 10.48550/arXiv.1705.08039. (Visited on 02/26/2024).