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Motivation

Euclidean geometry

Humans perceive the world as three-dimensional Euclidean space.

Width, height, and depth
are natural concepts.
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Jorge Stolfi, Public domain,
via Wikimedia commons

Computer linear algebra
assumes Euclidean space.
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Most Machine Learning is
based on Euclidean space.
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Motivation

Spherical geometry

Some problems are naturally treated on the sphere.

Earth surface

U.S. Government, Public domain,
via Wikimedia commons

Celestial sphere

ChristianReady, CC BY-SA 4.0,
via Wikimedia commons

Fisheye camera

Spike, CC BY-SA 4.0,
via Wikimedia commons

More subtly, cosine distance is often used in embedding spaces.
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Motivation

Hyperbolic geometry

Hyperbolic geometry
is less common in nature...

Toby Hudson, CC BY-SA 3.0,
via Wikimedia commons

...but common in data!

[Schumann et al 2021]
CC BY-SA 4.0
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Motivation

Hierarchies

Tree structures splitting at each level:

The number of leaves grows
exponentially with the level.

This is often the structure of:

▶ Classification categories

▶ Images and their parts

▶ Words and their relations

▶ Tree graphs

▶ . . .

Ubiquitous in Machine Learning!
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Motivation

Program for 45 minutes

1. Motivation

2. Curvature

2.1 Construction
2.2 Properties

3. Hyperbolic geometry

3.1 Lorentz hyperboloid model
3.2 Poincaré ball model
3.3 Isometries

Inspired by the tutorial on
Hyperbolic Representation Learning at ECCV 2022
by Mettes, Ghadimi Athig, Keller-Ressel, Gu, Yeung
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Curvature Construction

Geodesics

Geodesics are shortest distance paths between points.
They are straight segments in the Euclidean plane, and great circle arcs on the sphere.
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Curvature Construction

Euclidean distance between geodesics

An important characteristic of a geometry is the distance between geodesics at an
angle θ, at a distance r from their intersection.

For the Euclidean plane

sθ = 2r sin
θ

2
.
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Curvature Construction

Spherical distance between geodesics

For the sphere

α =
r

R
, r ′ = R sinα,

AB = 2r ′ sin
θ

2
= 2R sin
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Curvature Construction

Volume element

In polar coordinates

ds2 = dr2 + [f (r)]2dθ2 with f (r) =
∂sθ
∂θ

∣∣∣∣
θ=0

.

▶ Euclidean f (r) = r cos θ
2

∣∣∣
θ=0

= r ,

▶ Spherical f (r) =
R cos θ

2
sin r

R√
1−sin2 θ

2
sin2 r

R

∣∣∣∣
θ=0

= R sin r
R .

For R → +∞, spherical → Euclidean.
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Curvature Construction

Negative curvature, imaginary radius

Define curvature as κ := R−2.

f (r) =
1√
κ
sin r

√
κ,


Spherical κ > 0

Euclidean κ → 0

? κ < 0

.

Note κ < 0 means R = i |R|, rewrite

f (r) = − i√
−κ

sin
(
−ir

√
−κ

)
i sin(ix) = sinh x

=
1√
−κ

sinh
(
r
√
−κ

)
. sinh(x) =

ex − e−x

2
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Curvature Properties

The many faces of curvature

▶ Intrinsic: seen from within the space
▶ Volume growth
▶ Parallel postulate
▶ Grid distortion
▶ Parallel transport
▶ Sum of internal angles

▶ Extrinsic: seen from a larger space
▶ Principal curvatures
▶ Gaussian curvature

▶ Local: at a given point in space

▶ Global: in a given region of space

Modified from Mysid, CC BY-SA 3.0,
via Wikimedia commons
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Curvature Properties

Space growth
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κ < 0

exponential
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Curvature Properties

Parallel postulate
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Curvature Properties

Grid distortion
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Curvature Properties

Parallel transport
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Curvature Properties

Triangles

Sum of internal angles
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κ = 0∑
i αi = π

κ > 0∑
i αi > π

κ < 0∑
i αi < π

κ → −∞∑
i αi = 0
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Curvature Properties

Principal curvatures
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Principal curvatures are defined by the minimum and maximum radius
of the circles that locally approximate a (hyper-)surface.
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Curvature Properties

Gaussian curvature

Gaussian curvature is the determinant of extrinsic curvatures,
it coincides with intrinsic curvature.
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Hyperbolic space

Definition and history

Hyperbolic space is the space of constant negative curvature.

▶ Developed in the 19th century
by Gauss, Lobachevsky, and Bolyai.

▶ Is the geometry of Einstein’s theory
of special relativity.

▶ Inspired artworks by Maurits C. Escher.
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Hyperbolic space

Hilbert’s theorem

Bad piece of news:

There is no way to completely represent
the hyperbolic space of dimension 2

in the Euclidean space of dimension 3.
[Hilbert (1901)]

The best we can do is the tractroid,
but this is singular at the equator.

This is why we have to resort to models. Leonid 2, CC BY-SA 3.0,
via Wikimedia commons
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Hyperbolic space

Models of hyperbolic geometry

▶ Hyperboloid or Lorentz model

▶ Poincaré disk/ball

▶ Beltrami–Klein model

▶ Poincaré half-plane

▶ . . .

All equivalent, but depending on the operation some may be more convenient.

A conformal model is one that preserves angles.
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Hyperbolic space Lorentz or hyperboloid model

Minkowski space

Euclidean space Rn with an additional dimension

x = (x0, x1, . . . , xn) = (x0, x⃗)

x0 and x⃗ are called time and space components

Introduce the pseudo-scalar product

⟨x , y⟩L = x0y0 − (x1y1 + · · ·+ xnyn)

= x0y0 − x⃗ · y⃗ .

This is not positive definite!

Example: x2 = 0 when x20 = x21 + x22

Time

Space
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Hyperbolic space Lorentz or hyperboloid model

Lorentz hyperboloid model

The Lorentz hyperboloid model is the
manifold

x2 = x20 − x⃗2 = −1/κ with x0 > 0,

so x0 is fully determined by x⃗

x0 =
√

x⃗2 − 1/κ.

A definition of distance is needed. Ag2gaeh, CC BY-SA 4.0,
via Wikimedia commons
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Hyperbolic space Lorentz or hyperboloid model

Distance in the sphere

Rewriting a distance r as a scalar product extends it to the whole space.

For the n-dimensional sphere within Rn+1,
choose a meridian from the north pole

pr =

(
R cos

(
r
R

)
v̂R sin

(
r
R

)), p0 =

(
R

0⃗

)
,

⟨p0, pr ⟩ = R2 cos
( r

R

)
,

r = R cos−1

(
⟨p0, pr ⟩
R2

)
.

  r
  p0

  pr
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Hyperbolic space Lorentz or hyperboloid model

Distance in the sphere

Rewriting a distance r as a scalar product extends it to the whole space.

For the n-dimensional sphere within Rn+1,
choose a meridian from the north pole

pr =

( 1√
κ
cos(r

√
κ)

v̂√
κ
sin(r

√
κ)

)
, p0 =

( 1√
κ

0⃗

)
,

⟨p0, pr ⟩ =
1

κ
cos

(
r
√
κ
)
,

r =
1√
κ
cos−1(κ⟨p0, pr ⟩).

  r
  p0

  pr
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Hyperbolic space Lorentz or hyperboloid model

Distance in the Lorentz hyperboloid

Rewriting a distance r as a scalar product extends it to the whole space.

For the n-dimensional Lorentz hyperboloid
in (1, n) Minkowski space

pr =

( 1√
−κ

cosh
(
r
√
−κ

)
v̂√
−κ

sinh
(
r
√
−κ

)), p0 = ( 1√
−κ

0⃗

)
,

⟨p0, pr ⟩L =
1

−κ
cosh

(
r
√
−κ

)
,

r =
1√
−κ

cosh−1(−κ⟨p0, pr ⟩L).

r
p0

pr
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Hyperbolic space Lorentz or hyperboloid model

Exponential map

Let v = (0, v̂).
⟨p0, v⟩L = 0 so v is in the tangent space Tp0 ∼ Rn.

A geodesic at a point p0 in the direction v

pr = expp0(r , v) = cosh
(
r
√
−κ

)
p0 + sinh

(
r
√
−κ

) v√
−κ

,

is the intersection of a plane with the hyperboloid.

This is the exponential map that lifts points from the
tangent space to the hyperboloid.
The inverse logarithmic map projects points from the
hyperboloid to the tangent space.

p0

rv

pr
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Hyperbolic space Poincaré ball model

From Lorentz hyperboloid to Poincaré disk

The Poincaré disk is a scaled projection
of the Lorentz hyperboloid to the x0 = 0 plane
via the point (−1/

√
−κ, 0⃗), and vice versa.

Setting x0 = 0 in the linear combination gives

pr ,λ = λpr + (1− λ)

(−1/
√
−κ

0⃗

)
=

1√
−κ

(
λ cosh

(
r
√
−κ

)
− (1− λ)

v̂λ sinh
(
r
√
−κ

) )
!
=

1√
−κ

(
0

q⃗

)
,

so λ = [cosh
(
r
√
−κ

)
− 1]−1.

pr

qr
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Hyperbolic space Poincaré ball model

Poincaré disk algebra

The point at distance r from the origin in direction v̂ is
then

q⃗ = v̂
sinh

(
r
√
−κ

)
cosh

(
r
√
−κ

)
− 1

= v̂ tanh
r
√
−κ

2
,

which gives |q⃗| < 1, a disk/ball without shell.

The distance between two points in the Poincaré model
is given by

d(p⃗, q⃗) =
1√
−κ

cosh−1

(
1 +

2|p⃗ − q⃗|2

(1− |p⃗|2)(1− |q⃗|2)

)
.

qr
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Hyperbolic space Poincaré ball model

Poincaré disk graphics

Areas and distances

appear smaller at the boundary.

Geodesics are arcs of circles that

meet the boundary at right angles.
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Hyperbolic space Isometries

Origins

The Lorentz hyperboloid and Poincaré disk/ball have circular symmetry.

All points in the hyperbolic manifold have the same properties.

The origins are only special with respect to the coordinate system!
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Hyperbolic space Isometries

Hyperbolic isometries

A hyperbolic translation τx moves 0 to x keeping all pairwise distances constant.
Other names: Lorentz boost, Möbius transformation, gyrovectorspace addition
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Hyperbolic space Isometries

Formulas for hyperbolic translations

Lorentz hyperboloid (Lorentz boost)

τx(y) = Λxy where Λx =

(
x0 x⃗T

x⃗
√
I+ x⃗ x⃗T

)
. (1)

Poincaré ball (gyrovectorspace addition)

τp⃗(q⃗) = p⃗ ⊕ q⃗ =
(1− |p⃗|2)q⃗ + (1 + 2p⃗ · q⃗ + |q⃗|2)p⃗

1 + 2p⃗ · q⃗ + |p⃗|2|q⃗|2
.

Note p⃗ ⊕ q⃗ ̸= q⃗ ⊕ p⃗.
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Hyperbolic space Isometries

Gyrovectorspace calculus

Gyrovectorspace addition:

p⃗ ⊕ q⃗ =
(1− |p⃗|2)q⃗ + (1 + 2p⃗ · q⃗ + |q⃗|2)p⃗

1 + 2p⃗ · q⃗ + |p⃗|2|q⃗|2
.

Gyrovectorspace product with scalar:

r ⊗ p⃗ = p⃗ ⊗ r = tanh
(
r tanh−1 |p⃗|

) p⃗

|p⃗|
.

Geodesic arc from p⃗ to q⃗:

λ(t) = p⃗ ⊕ ([(−p⃗)⊕ q⃗]⊗ t), t ∈ [0, 1].

This is similar to the Euclidean formula λ(t) = p⃗ + (q⃗ − p⃗)t.
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Summary

Summary

▶ Hyperbolic space can describe hierarchical data
thanks to exponential growth with distance.

▶ Curvature is the concept underlying space growth,
grid distortion, and parallel transport.

▶ Hyperbolic space is defined
by constant negative curvature.
It ccorresponds to a sphere of imaginary radius.

▶ The Lorentz hyperboloid and Poincaré ball
are hyperbolic space models with different
but equivalent formulas. C. Rocchini, CC BY 2.5,

via Wikimedia commons
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